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Review Article

Parkinson’s Disease and Therapeutic Strategies
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Abstract

Parkinson’s disease is the second most common aged associated neurodegenerative disorder after Alzhiemer
affecting approximately 1% of the population above the age 50. James Parkinson for the first time medically
described Parkinson disease as a neurological disorder in his famous work “ An Essay of the shaking palsy”.
The pathological hallmark of PD is selective and progressive degeneration of dopaminergic neurons in the
substantia nigra pars compacta of human brain and the accumulation of Lewy bodies in the surviving neurons.
Cardinal symptoms of Parkinson’s disease include resting tremor, rigidity, postural instability. Besides
motor symptoms, several non-motor symptoms are manifested many years before the onset of motor symptoms.
Parkinson’s disease is classified into sporadic and familial PD. Therapeutic strategies prior to Levodopa
and Deep Brain stimulation include bloodletting from the neck, vesicatories, shaking chair, hydrotherapy,
spa treatments, light exercise and treating with hyoscyamine, arsenic, morphia, conium, Indian hemp”
(cannabis). Though levodopa is the leading treatment for PD, it has many limitations. Stem cell therapy
appears to be a promising therapy to replenish degenerated dopaminergic neurons.
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Introduction

Parkinson’s disease (PD) is the second most
common aged associated neurodegenerative disorder
after Alzheimer disease, affecting approximately 1%
of the population above the age of 50. It is believed
that 7-10 million people worldwide are suffering from
PD [1]. Studies have shown that prevalence of PD in
men is higher (one and half times more) than that of
women [2]. With the increased in the life expectancy
of the world population, numbers of PD patients are
also expected to double by 2030 [3], posing a major
health care burden.
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The Indian traditional systems of medicine
“Ayurved” texts from about 1000 BC provide
descriptions which suggest the existence of symptoms
similar to PD [4]. Ancient Chinese, inner canon yellow
emperor, sources from about450-500 BC also mention
the treatment of diseases which are similar to PD [5].
Several other sources, including an Egyptian papyrus,
the Bible and Galen’s writings describe symptoms
resembling those of PD [6]. Much later in 1817, James
Parkinson, an English doctor, published his famous
work “An Essay of the shaking palsy” reporting six
cases of paralysis agitans. His essay for the first time
described the symptoms of paralysis agitans [7,8].
Early neurologists who have contributed to the
knowledge of the disease include Erb, Trousseau,
Kinnier, Gower and Jean-Martin Charcot who, later,
recognized the importance of James Parkinson’s work
and named the disease after him [8].

The pathological hallmark of PD is selective and
progressive degeneration of dopaminergic neurons
(DAn) and the accumulation of Lewy bodies
(LB)(intracellular cytoplasmic proteinaceous
inclusions) in the substantia nigra (SN) of the mid brain
resulting in dopamine deficiency in the brain. Alpha
synuclein (o-syn) is the major component of LB and
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may act as a toxic factor mediating the pathology of
PD [9]. Clinical signs of PD include resting tremor,
bradykinesia, rigidity and postural instability. It can
cause the patients to develop a forward or
backward lean due to the loss of postural reflexes
[10]. Besides these major motor symptoms, PD is
usually associated with numerous non-motor
symptoms (NMS).

Despite intensive and extensive studies conducted
worldwide, the etiology of PD remains unclear.
Although genetic elements and exposure to
environmental toxins, such as herbicides, pesticides,
and heavy metals are thought to play a crucial role in
disease onset, ageing remains the predominant risk
factor [11]. 95% PD patients is believed to have a
sporadic component. Some studies suggest that
environmental factors may be more important than
that of the genetic factors in familial aggregation of
PD. In mostof the PD cases, the cause is environmental
influence, probably toxins,and sustained neuronal
loss due to progressing age [12]. Observing PD in 1-
methyl-4- phenyl- 1,2,3,6- tetrahydropyridine (MPTP)
drug users regenerated curiosity in reassessing
environmental influences [10].

Current therapeutic strategies for PD mitigate
symptoms by the replacement of dopamine, with
variable efficacy and considerable side effects.
Levodopa (L-dopa) is a dopamine precursor and is
the leading treatment of PD for over 40 years. L-dopa
improves motor impairment by enhancing dopamine
levels [13]. However, prolong use of L-dopa leads to
other motor dyskinesia (a category of movement
disorders that are characterized by involuntary
muscle movement) that undermine the benefits of
treatment. Surgery has been used to reduce motor
symptoms in advance cases where drugs are
ineffective [14]. The development of effective treatment
for PD is difficult because pathology is believed to be
affected by several pathways. However, there are
currently no established curative or preventive
interventions, stemming from a poor understanding
of the molecular mechanism(s) of the pathogenesis.

Pathological features

Non-Motor Symptoms(NMS)

NMS are the symptoms, which do not involve
motor coordination of the central nervous system
(CNS). NMS are manifested many years before the
onset of motor symptoms in the patients of PD. NMS
are commonly prevalentin a large proportion of PD
patients, but these NMS are often overlooked in
clinical practices due to lack of complaints by the

patients. These symptoms include neuropsychiatrics
symptoms (mental disorder and behavioral changes),
sleep disorders (a medical disorder of the sleep
patterns of a person or animal), fatigue (a subjective
feeling of tiredness which is distinct from weakness
and has a gradual onset), sensory symptoms (may
affect sense like hearing, touch and taste), autonomic
dysfunction (affect a small part of the autonomic
nervous system or the entire autonomic nervous
system), gastrointestinal symptoms (symptoms
related to gastrointestine), dopaminergic drug
induced behaviour (non-motor fluctuation
dysautonomia) and other symptoms [15].

Some of the NMS such as olfactory, fatigue, REM
sleep behavior disorders, constipation, pain and
depression appear at the early stage of the disorder
and occur throughout the course of the disease. The
frequency of NMS increases with the progress of the
disease. Some non-dopaminergic neurotransmitters
such as serotonergic, noradrenergic and cholinergic
transmission are involved in most of the non-motor
symptoms conjugated with PD [16].

Major NMS and related sub symptoms associated
with PD pathology are listed in Tablel.

Motor symptoms

Motor symptoms (MS) typically involve a loss of
motor coordination or lead to restricted mobility. MS
include resting tremor, rigidity, bradykinesis and
postural instability.

Resting Tremor: In the initial stages of the disease,
about 70% of patients experience a mild tremor in the
hand or foot or less commonly in the jaw or face. A
typical onset is shaking in one finger. The tremor
comprises shaking or oscillating movement, and
usually appears when a person’s muscles are at rest,
hence the name “resting tremor.” The affected body
part trembles when it is not performing any function.
Typically, the fingers or hand will tremble when
folded or when the arm is held loosely at the side.

Bradykinesia: Bradykinesia “slow movement”
describes as a general reduction of spontaneous
movement, which gives the appearance of abnormal
stillness and reduce in facial expressivity.
Bradykinesia causes difficulty with repetitive motion,
such as finger tapping. Due to bradykinesia, patients
with Parkinson’s may have difficulty in performing
everyday functions, such as buttoning a shirt, cutting
food or brushing teeth. Patients who experience
bradykinesia may walk with short, shuftling steps.
Bradykinesia can affect a person’s speech too, which
may become quieter and less distinct as Parkinson’s
progresses.
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Table 1: Major Non-motor symptoms and related sub symptoms associated with Parkinson’s disease (PD) (modified from
Bonnet et al 2012)

SL. No Major NMSs Related sub Symptoms

01. Neuropsychiatric symptoms Depression, anxiety, apathy, hallucination, attention deficit, cognitive
impairment, dementia, dopaminergic dysregulation syndrome (usually
related to L-dopa), impulse control disorders, panic attacks.

02. Sleep Disorders Random eye movement (REM), sleep behaviour disorder (possible premotor
symptoms) , excessive daytime somnolence, narcolepsy type “sleep attack”,
restless legs syndrome, periodic leg movements, insomnia, sleep disordered
breathing, non-REM parasomnias (confusional wandering)

03. Fatigue Central fatigue (may be related to dysautonomia), peripheral fatigue.

04. Sensory symptoms Pain, olfactory disturbance, hyposmia, functional anosmia, visual
disturbance (blurred vision, diplopia; impaired contrast-sensitivity).

05. Autonomic dysfunction Bladder dysfunction (urgency, frequency, nocturia), sexual dysfunction,
sweating abnormalities (hyperhydrosis), orthostatic hypotension.

06. Gastrointestinal symptoms Dribbling of saliva, dysphagia (choking), agueusia, constipation, nausea,
vomiting.

07. Dopaminergic drug induced behavior Hallucinations, psychosis, delusions, dopamine dysregulation syndrome,
impulse control disorders.

08. Non-motor fluctuation Dysautonomia, cognitive/ psychiatric, sensory/ pain, visual blurring

09. other symptoms Weight loss

Rigidity: Rigidity is the stiffness and inflexibility
of the limbs, neck and trunk. Muscles normally stretch
when they move, and then relax when they are at
rest. However, in Parkinson’s rigidity, the muscle tone
of an affected limb remains stiff and does not relax,
sometimes contributing to a decreased range of
motion. PD patients commonly experience tightness
of the neck, shoulder and leg. A person with rigidity
and bradykinesia does not swing his or her arms
when walking. Rigidity can be uncomfortable
or even painful.

Postural Instability: Patients with postural instability
have lost some of the reflexes required for maintaining
an upright posture, and may lean backward if jostled
even slightly. Some develop a difficult tendency to
sway backward when rising from a chair, standing
or turning. This problem may result in a backward
fall. People with balance problems may have
particular difficulty when making turns or quick
movements. Doctors test postural stability by using
the “pulltest.”

Types of PD

On the basis of causes, PD can be classified
into”Sporadic PD and Familial PD”. Researchers
think that mitochondrial dysfunction, oxidative
stress, protein misfolding play a central role in
PD pathogenesis but, the exact pathogenic
mechanisms leading to selective DAn death in PD
remain poorly understood and it appears to
involve both genetic (familial) and environmental
factors (sporadic).

Sporadic Parkinson’s Disease

Sporadic PDis a disease that is occurring randomly
in a population with unknown cause. In sporadic
PD, the cause is considered to be environmental
although the familial factor is also present, suggesting
that the pathogenesis of PD is likely to be multifactorial
which may involve gene-environment interactions.
The discovery of MPTP, induces pathological features
of idiopathic PD by affecting the nigrostriatal system
[17], pesticide (rotenone) and herbicide (paraquat),
has implicated environmental toxins in the induction
of sporadic PD [18,19]. Both epidemiological and
experimental studies suggest that the potential
involvement of specific agents such as neurotoxicants
(pesticides) or neuroprotective compounds (coffee
and tobacco products) in the pathogenesis of
nigrostriatal degeneration, further supporting a
relationship between the environment and PD [20].

The studies of environmental risk factors of PD are
not an easy task because interactions of
environmental toxins and gene-environment may
occur well before the onset of clinical symptoms since
it remains undetected for many years. Moreover,
neurodegenerative changes that underlie the
symptoms of PD may be the result of combined effects
of multiple exposures and these effects could have
been compounded by increased vulnerability of the
ageing nigrostriatal system to toxic injury over the
years. Epidemiological and case-control studies
suggest that rural living, well water drinking, use of
pesticides, and certain occupations (farming, mining,
and welding) are associated with an increased risk
of PD [21-23]. Epidemiological studies reveal that
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Table 2: Demonstrated neuroprotective efficacy of certain natural products and implicated biochemical and molecular pathways

Agents

Mechanism

Molecular pathways

Resveratrol

Curcumin

Anti-inflammation

Anti-apoptosis

Anti-oxidation

Neurotrophic effect

Anti-inflammation

Anti-apoptosis

Anti-oxidation

Prevent a-synuclein
aggregation and
fibrillation
Inhibit MAO-B
Anti-Inflammation

Anti-Apoptosis

Anti-oxidation

Neurotrophin-like
effects
Neuroprotective
activity

Neuroprotective
activity

Neuroprotective
activity

Decrease the mRNA levels of IL-la and TNFa [96]; decrease the levels of COX-2
expression [97]; decrease the levels of NO, TNF-a, IL-1p, IL-6, MCP-1; suppress
production of IL-12p40, IL-23 and C- reactive protein, and respective receptors [98];
down-regulate MPO; modulate the activity of PGC-1a, Akt and NF-«B [99,100].

Reduce the activity of caspase-3 and the level of Bax [101]; regulate DNA fragmentation
and the mRNA levels and protein expression of Bax, Bcl-2, cleaved caspase-3, and cleaved
ARP-1 [102]; activate sirtuin deacetylases and PPAR-y [103,104]

Diminish superoxide anion [105]; inhibit ROS (Reactive oxygen species) generation [106];
up- regulate the antioxidant status and the expression of MsrA [103]; activate PPAR-y,
AMPK, SIRT1; raise the mRNA expression of PGC- 1d’s target genes [107]

Increase neurotrophic factors release in the concentration- and time- dependent manners
[108]

Inhibit NF-xB translocation [105]and AP-1 activation [109]; inhibit the protein expression
of GFAP [110] and iNOS, decrease activation of astrocytes and microglia [111], reduce
pro-inflammatory cytokine, alleviate loss of TH-IR fibers, protect axon [112]

Reduce MMP loss, attenuate MPP(+)-induced an increase in intracellular ROS level,
induce over expression of BCl-2 and antagonize MPP+-induced over expression of iNOS;
[113] ease alpha S induced toxicity [114]; protect DAn axon [115]; decrease the Bax/Bcl-2
ratio[116]; reduce the accumulation of AS53T a-syn[117]; inhibit the JUN/c-Jun
pathway[118]; block MPP(+) [119]

Restore membrane potential, increase level of Cu-Zn superoxide dismutase, suppress
ROS [105]; sustain SOD1 level [111]; reduce the levels of p-p38, cleaved caspase-3 and
quinoprotein formation [121]; restore depletion of GSH levels [122], free radical
scavenging [123]; inhibit oxidative stress and the mitochondrial cell death pathway [124];
activate the N1f2/ ARE pathway [125]; reduce p53 phosphorylation [126]

Prevent a-synuclein aggregation and fibrillation [127]; destabilize preformed alpha S
[128]; specifically binds to oligomeric intermediates [129];

Inhibit MAO-B activity[127]

Suppress NO production and TNF-a secretion, inhibit the mRNA expressions of iNOS,
TNF-q,IL-1p, COX-2 and MMP-9, inhibited the phophorylations of PI3K/ Akt and MAPKSs
and the DNA binding activities of NF-kB and AP-1 [130],; suppress phosphorylation and
nuclear translocation of NF-xB/p65, phosphorylation and degradation of IkB and the
phosphorylation of IKK;inhibit the activation of Akt and ERK1/2 [131]; reduce NO-
formation and PGE2 synthesis [132]; attenuate upregulation TNF-a, IL-1p and IL-6
mRNA, and iNOS and COX-2 expression [133]

Inhibit the activation of caspase-3, reduce iNOS and NO production [134] ; increased the
phosphorylation,inhibition of Bad through activation of the PI3K/Akt pathway [ 135];
Enhance theexpression of Bcl-2 protein and mRNA, reduce the expression of Bax, Bax
mRNA, and iNOS, and attenuate the cleavage of caspase-3 [136]

Reduce the generation of ROS and cytochrome c release[134], restore mitochondrial
membrane potential, increased the phosphorylation inhibition of Bad through activation
of the PI3K/Akt pathway [136] decrease iron influx, inhibit IRPs; decrease DMT1-
mediated ferrous iron uptake and iron-induced cell damage [137,138]

Increase neurite outgrowth; reversed MPTP-induced cell death [139]

When administered orally to mentally retarded children showed significant increase in
general ability and behavior patterns [140]. It improves brain power [142,143] and
decreased the levels of norepinephrine, dopamine, 5-HT, and their metabolites in the
brain [141,144]

Is used in traditional method for epilepsy, constipation, cough, fever, clearing voice,
diabetes, and mental disorders [145]; the neuroprotective effect on lipofuscinogenesis and
fluorescence product in the brain of D-galactose-induced ageing accelerated mice
[146,141]

Treating a number of ailments like epilepsy, mental ailments, abdominal tumors, kidney
and liver troubles, etc. [147]; the hydroalcoholic extract of rhizomes against middle
cerebral artery occlusion (MCAO)-induced ischemia; found to have significant
improvement in neurobehavioral performance associated with significant reduction in
malondialdehyde levels in the cortex and increase in glutathione as well as superoxide
dismutase activity in the cortex and corpus striatum in rats [146,141]
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Table 3: Classification of biomarkers

Biomarker Type Related Symptoms

1 Behavioural biomarkers ~ Depression [160], sexual dysfunction, altered circadian rhythm (sleep wakeful cycle), micrographia
(small words), incontinence, deafness, agraphia (impaired handwriting), acalculia (difficulty
solving simple calculation due to dementia) [159]

2 Sensory biomarkers Olfactory deficit discrimination, hypoguesia deafness (loss of hearing), impaired visio-spatial and
color discrimination, hypoguesia (loss of taste) [159].

3 Cognitive biomarkers ~ Agraphia, acalculia [159]

4 Motor biomarkers Resting tremor, postural instability, muscular rigidity, bradykinesia [159]

5 Omics biomarkers a-syn, DJ-1, miRNA [159]

exposure to rotenone and MPTP leads to PD at later
stages of life. Further experimental data substantiates
that rotenone is a complex I inhibitor. Therefore
rotenone exposure disrupts ATP synthesis leading
to the death of DAn in PD patients [24,25].

Mechanisms of Environmental toxins

Discovering of MPTP causing Parkinsonian
syndrome triggered to investigate further for
environmental factors as potential causes of PD.
Epidemiological studies have suggested that
environmental toxins are one of the major causes of
sporadic PD [26]. The mechanisms by which the
neurotoxins induce PD like symptoms are briefly
described below.

MPTP: It is a metabolite of the drug heroin and is
transported across the blood-brain barrier (BBB) by
dopamine transporter (DAT) of plasma membrane
and once it crosses the BBB, MPTP is metabolically
activated to the fully oxidized 1 methyl 4-
phenylpyridinium species (MPP+) which is then
taken up into DAn via DAT [27,28]. After MPP+
entering into DAn, it is accumulated into synaptic
vesicles via the vesicular monoamine transporter
(VMAT?2) [29]. The ratio of DAT to VMAT2 indicates
the sensitivity of DAn to toxic injury[30].

6 Hydroxy dopamine (6 OHDA): 6 OHDA,
catecholaminergic neurotoxin, causes severe loss of
dopamine neurons within a day in mouse model of
PD [31]. Inside neurons, 6 OHDA produces ROS and
quinones that inactivate biological macromolecules.
Till date, no LB like inclusion has been observed in
the 6-OHDA model.

Paraguat (PQ): One of the most commonly used
herbicides in the world is PQ. The structural similarity
of PQ with MPP+ suggested that PQ might be
dopaminergic neurotoxicant which may lead to PD.
PQ is suspected to carry to the brain by neutral amino
acid transporters and subsequently the cells in a
sodium dependent fashion [32]. Once within cells of

the CNS, PQ acts as a redox cycling compound at the
cytosolic level, which potentially leads to indirect
mitochondrial toxicity [33]. Recent studies have
shown that PQ induced apoptosis involves Bak
protein, a pro apoptosis Bcl 2 family member [34-38].

Rotenone (ROT):ROT is a crystalline isoflavone
used as an insecticide. Inhibition of complex I of
mitochondprial electron transport chain (METC) by
ROT has been widely used to study the role of the
METC in apoptosis [39,40]. The METC is the major
site of ATP synthesis in eukaryotes and it also plays
an important role in apoptosis [41-43]. It is now known
that upon apoptotic stimulation, mitochondria release
several proapoptotic regulators, such as cytochrome
c [44], Smac/Diablo [45,46], endonuclease G [47], and
apoptosis inducing factor [48] to the cytosol. These
proapoptotic regulators will then activate cellular
apoptotic programs downstream [41-43]. The release
of proapoptotic regulators is further regulated by the
translocation of Bcl 2 family proteins [49,50].

Maneb (MB): MB, a commonly used fungicide,
causes an irritant to respiratory tracts and is capable
of inducing sensitization by skin contact.
Mechanistically, MB can cross the BBB. Although
knowledge of the mechanisms of this toxin is very
limited, MB inhibits mitochondrial complex III [51].
Further, MB was shown to induce apoptosis through
Bak activation, whereas combination of PQ and MB
inhibits the Bak dependent pathway while
potentiating apoptosis through Bak protein [52].

Heavy metals (HM):HM are metals with relatively
high densities, atomic weight or atomic numbers. HM
such as iron, manganese, copper, lead, aluminium,
zing, etc. can affect the DAn in the SN and increase
oxidative stress. Exposures to these heavy metals
increase the risk of PD. Chronic exposure to high
levels of manganese in manganese miner’s cause
accumulation of this metal in the basal ganglia,
leading to tremors, rigidity and psychosis that mimic
PD [53,54]. The potential role of iron and other
transition elements has also been studied. The level
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of ferritin in PD patients was found to be decreased.
Hence iron accumulation together with decrease
binding capacity may increase the risk for iron
mediated toxic reactions in PD by generating the
highly toxic hydroxyl radical in the presence of iron
and hydrogen peroxide, leading to oxidative stress
and neurodegeneration.

Genetics/Familial PD

Familial PD is caused by the mutation of genes.
Familial PD cases are much less observed compared
to sporadic PD cases. Mutations occur in a number of
genes such as o-syn [55], Parkin (PARK2)[56], PTEN-
induced putative kinase 1 (PINK1) [57], leucine- rich
repeat kinase 2(LRRK2) [58], DJ-1[59] and
ATP13A2[60]. Among the genetic cases, autosomal
dominant genes are a-syn and LRRK2 and the rest
are known as autosomal recessive genes. Studies of
familial forms of PD suggest that a-syn plays a crucial
role in the development of the disease. Excess o-syn
gene produce extra a-syn protein which damage
neurons. The harm is more pronounced in DAn of
SN which plays a key role in controlling normal
movement in PD. Further, the identification of the
mutated a-syn gene causing familial PD [61] as a risk
factor for sporadic disease provides a genetic context
for the disease. The finding of a-syn as a key component
of the Lewy body[62] further links this gene to potential
molecular mechanisms of PD.Studies on Parkin and
PINK1 of Drosophila mutants have suggested that
mitochondrial dysfunction is the major cause for the
PD pathogenesis and that these two PD genes areina
common pathway with Parkin downstream of PINK1.
All the known genetic mutations linked to PD are
directly or indirectly implicated in mitochondrial
homeostasis, energy metabolism, response to oxidative
stress or proteomes functional pathways or
endoplasmic reticulum stress response.

Therapeutic strategies

Early nineteenth century, James Parkinson
suggested venesection, specifically bloodletting from
the neck, followed by vesicatories to induce blistering
and inflammation of the skin [63]. Efforts were framed
to decompress the medulla in order to divert blood
and inflammatory pressure away from the brain and
spinal cord. In the mid-1800s, Jean-Martin Charcot
was also the first to suggest the use of the term
“Parkinson Disease”[64] and suggested vibratory
therapy for treatment of PD where he developed a
replication device which provide rhythmic movement
by an electrically powered “shaking chair” [65]. Other
therapies includes hydrotherapy, spa treatments,
light exercise, electrical incitement by faradic,

galvanic, or direct spark (franklinization) were used
to stimulate weakened muscles. In PD patients,
rigidity and some sensory symptoms improved, but
not in tremor. For tremor, Gower used hyoscyamine,
arsenic, morphia, conium (hemlock), and “Indian
hemp” (cannabis) as agents for temporary decline in
tremor [66]. Precisely noting on the power of cannabis
and opium Gower stated: “I have several times seen a
very distinctimprovement for a considerable time under
their use.”[67]. Presently, cannabis have some
dopaminergic activation properties, but use of opium
affects themotor system in a generalized manner without
direct or primary dopaminergic involvement [68].

Levodopa

L-3,4-dihydroxy- phenyl-L-alanine(L-dopa), a
precursor of dopamine, is used in place of dopamine
as dopamine cannot pass the BBB.It is administered
either orally or intravenously where it gets converted
to dopamine before it reaches to brain, hence it is
administered with another substance called
carbidopa (decarboxylase inhibitor). Addition of
carbidopa decreases the amount of L-dopa that is
required and may reduce some of its side effects such
as nausea and vomiting by reducing the supply of
free dopamine outside the brain. Carbidopa reduces
the amount of needed L-dopa and delays the
conversion of L-dopa into dopamine until it reaches
the brain, preventing some of the side effects that often
accompany L-dopa therapy. L-dopa is a very useful
drug for reducing the tremors and other symptoms of
PD during the early stages of the disease. Its use is
associated with improved mobility, reduced disability
and life expectancy of L-dopa treated patients is
markedly increased. A high-protein diet can interfere
with the absorption of L-dopa, so physicians restrict
patients in taking protein-rich meals during their early
stages of the treatment [69].

With the knowledge that L-dopa was the natural
precursor to dopamine, Birkmayer received
Hornykiewicz’s supply of laboratory L-dopa and
injected it intravenously for the first time to
Parkinsonian patients in 1961. He observed that, bed-
ridden patients who were unable to sit up, patients
who could not stand up when seated, and patients
who when standing could not start walking
performed all these activities with ease after L-dopa.
They walked around normally and could even run
and jump [70]. L-dopa is a naturally occurring amino
acid, where researchers have found L-dopa
containing compounds in early medicine. Mushroom
tyrosinase has been commercially used in the
enzymatic synthesis of L-dopa by enzyme
immobilization [71]. It lowers the production cost due
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to the reusability of the enzymes. Cowage or cowitch
plant (Mucunapruriens) is known under the name of
Atmagupta in Sanskrit and contains L-dopa [72].
These developments have been based on the logical
understanding of the dopamine system, metabolic
pathways, and receptor populations.

Limitations

Long-term treatment leads to abnormal involuntary
movements known as L-dopa-induced dyskinesia ,
which are uncontrolled and repetitive movement in
the axis, arms, legs and oro- facial zone [73,74]. These
complications occur in about 50% of L-dopa-treated
patients who have received the drug for more than 5
years, in 80% of patients treated for 10 years, and in
nearly all patients with young onset disease [75,76,77]
Patients have to suffer a variety of side effects; most
commonly are nausea, vomiting, low blood pressure
and restlessness. The repeated pulsatile stimulation
of striatal dopamine receptors with chronic oral L-
dopa treatment induces plastic changes in basal
ganglia circuits that can lead to the development of
motor response complications. A serious concern
regarding L-dopa is that it causes hallucinations and
psychosis after long-term use. Some patients exhibit
severe dyskinesia soon after taking low doses of
L-dopa and chronic treatment does more harm since
L-dopa itself is a pro-oxidant which could contribute
to tissue damage due to oxidative stress in PD and
other neurological disorders. There are controversies
in the treatment, whether it causes the motor
complications or it is toxic to DAn, but it has not yet
been proven and clinical trials have not clarified this
situation.

Deep Brain stimulation (DBS)

DBS was first experimented in animal about 70
years ago and has been used in human subjects,
mainly to treat movement disorders. It is a kind of
pacemaker, a battery-operated medical device called
aneurostimulator (usually implanted under the skin
near the collarbone, in some cases it may be implanted
lower in the chest or under the skin over the abdomen)
that involves implanting of the electrodes within
specific brain circuits to modulate the activity of those
circuits, either to suppress pathological neuronal
activity or to drive inactive output [78]. Stimulation
through an electrode placed within a nuclear region
will affect several neuronal cell components [79]. The
target location is often choosed using structural
neuroimaging, usually computed tomography or
magnetic resonance imaging. This approach has
been used to guide electrode placement for patients

with depression, cluster headache, and epilepsy [80].
There are many brain targets, mainly the subthalamic
nucleus (STN) and also the globus pallidus interna
that the DBS electrode may be placed within, which
have been approved by Food and Drug
Administration in 2002 for use in PD. DBS changes
the rate of signal and pattern of individual neurons
in the basal ganglia [81] and eliminates abnormal
rhythmic oscillation between the cortex and the basal
ganglia [82]. The electrical current also acts on
synapses and triggers adjacent astrocytes releasing
calcium and to promote neurotransmitters (adenosine
and glutamate) from excitatory efferent neurons [83]

* Additionally, this has an overall increase in
cerebral blood flow [84] and stimulates
neurogenesis [85]. DBS depend on a number of
parameters, including stimulation, physiological
properties of the targeted cells, structural
configuration of the electrode and the surrounding
tissue, and possibly the fundamental
pathophysiology of different disease states [86].
However, still it remains uncertain of how these
influences lead to changes in the symptoms of a
certain neurological disease. Therefore, the
foundation of this therapy has been more or less
observational.

Limitations

The most adverse events associated with
placement of leads for DBS are infection and
intracranial hemorrhage. It also includes acute or
chronic neurological and neuropsychological
complications such as surgery, hardware and
stimulation and was found that the overall incidence
of hemorrhage was 5.0%, with symptomatic
hemorrhage occurring in 2.1% of patients and
hemorrhage resulting in lack of permanent
neurological activities or death in 1.1% [87].
Postoperative seizures have also been reported and
usually occur within 48 hrs of surgery [88], with an
estimated incidence of 2.4% [89]. The most common
hardware complications include infections,
migrations or misplacements of the electrodes, wire
fractures, skin erosion and device malfunction [90],
which often require device removal and a period of
antibiotic treatment before consideration for device
replacement [91]. Stimulation-related side effects
include muscle contractions, dysarthria, ocular
deviations, tremor, dyskinesia, headache, pain and
paresthesia [92]. Verbal fluency is the most common
cognitive adverse effect of STN DBS, caused by
surgical electrode implantation rather than
stimulation-induced interference [93]. Changes in
medication, neuronal plasticity following DBS,
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adaptation difficulties induced by the motor effects
of DBS shows chronic effects mania, depression,
apathy, panic, impulsivity, anxiety, hallucinations,
and even suicidal thought [94]. In general, DBSis a
relatively safe approach associated with low rate of
side effects, which is an effective therapeutic option
to assist in a multitude of otherwise treatment-
resistant neurological diseases.

Natural Remedies to Parkinson’s Disease

Studies have now shown that polyphenols play a
pivotal role in mediating the therapeutic actions of
these herbal products. Polyphenols are natural
compounds with antioxidant properties, present in
plants, vegetables and fruits. They represent
secondary plant metabolites synthesized to defend
against microbial attack, pests and harmful
radiations, in addition to providing the plant with
brilliant colors and fragrance. Natural polyphenols
vary from simple molecules (phenolic acids) to
complex polymeric forms (condensed tannins) [95].
Some of the major plant derived products suggested
as therapeutic agents for PD are shown in Table 2.

Stem Cell Therapy (SCT)

SCT is the use of stem cells (SCs), undifferentiated
cells of a multi-cellular organism, to treat or to prevent
a disease. SCs have multilineage differentiation
potential and maintain self- renewal and proliferative
ability that enables the researcher to replace the
degenerated neuron and enhancing the levels of
dopamine through regeneration of DAn, which leads
to the creation of conditions to model inherent features
in the pathogenesis of PD.

At present, there are two types of grafts resources
for PD: allogenic and autogenous. Allografts include
fetal brain or other human embryonic tissues and
human embryonic stem cell (hESC) derived DAn while
autologous grafts derived from patient-specific
somatic cells via in vitro induced pluripotent stem
cells(iPSC) reprogramming or direct lineage
conversion. DAn from fetal ventral mesencephalic
tissues were the major cell replacements in the
implemented clinical trials.

The development of new cell models of PD is a
particularly promising area of SCT. New advances
in stem-cell technology have been acquired from pure
PD patient's homogeneous generation of induced
DAn such as hESc-derived Dan [149,150] iPSc-
derived Dan [148,149,150] and directly
reprogrammed DAn [151]. This technology provides
an opportunity for the cellular events under
genetically defined condition to be investigated in a
human context. Compared with animal models, stem-

cell models have achieved the following
breakthroughs in mimicking the microenvironment
of the PD cell in vitro. First, studies suggest that
patient-specific derived cells still retain an epigenetic
memory [152] (the topological memory) [153] and keep
expressing the carrying transcriptomic disease-
causing mutation memory [154,155]. Second, the
isogenic cells from healthy patients were procured
from patient-specific cells via a genome-editing
technique, providing a method for single-factor
analysis to study observed PD phenotypes caused by
a certain PD-causing mutation. Third, on the basis of
generation of pure lines of iDAn with genetic variants,
scientists could mimic mono-factorial environmental
stress-related neurodegenerative states by imposing
artificial stress factors on pathological processes of
PD [156,157].

Limitations

Despite many advantages of SCT, many questions
and obstacles exist in the therapeutics of stem cells.
The Major challenges of the clinical use of stem cells
include ethical questions, tumorigenesis, immune
response, and toxicity to a degree. There are many
ethical issues and intense immune response in the
use of ESCs. Compared with ESCs, iPSCs have lesser
ethical issues and reduced immune rejection, but
because of powerful pluripotency, the risk of tumor
development of iPSCs is greater than that of other
stem cells. Morever, iPSCs derived from autologous
PD patients may carry pathogenic gene mutations
thataffect the prognosis for cell-replacement therapy.
To obtain a higher rate of survival and integration,
the details of canonical grafting procedures need to
be estimated. In spite of significant limitations of stem
cell therapeutics, it throws a great promise to replenish
the degenerated DAn in PD patients.

Biomarkers

National Institutes of Health (NIH) working group
(2011) defined biomarker as “a characteristic that is
objectively measured and evaluated as an indicator
of normal biological processes, pathogenic processes,
or pharmacologic responses to a therapeutic
intervention”. Biomarkers are tools that are used to
indicate or evaluate the progress of a disease or the
effects of treatment. Biomarkers facilitate early
diagnosis, disease prevention, drug target
identification, and drug response[158]. PD
biomarkers include (1) preclinical biomarkers; and
(2) clinical biomarkers [159](Classification of
biomarkers is given in Table 3). The most biomarkers
could be used for diagnosis, tracking disease
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progression, and development of effective treatments
of PD through clinical symptoms and neuroimaging,
anumber of genetic and biological markers from blood
and CSF may hold promise for the early diagnosis
of PD.

New approaches such as transcriptomics,
proteomics, metabolomics have been an integral part
in identifying pathways that are related with
dopaminergic neurodegeneration and subsequently
PD. Molecular biomarkers include nucleic acid-based
biomarkers such as gene mutations or
polymorphisms, gene expression analysis, peptides,
proteins, lipid metabolites, and other small molecules.
Transcriptomics have reliably identified alterations
in pathways in the SN pars compacta and blood of PD
subjects associated with mitochondrial and
proteasomal function, dopamine neurotransmission
and oxidative stress. In addition, it has uncovered
the axon guidance pathway as a potential contributor
to dopaminergic neurodegeneration. The use of
proteomics has provided a comprehensive
characterization of the human midbrain, as well as
the protein composition of human cerebrospinal
fluid. This platform has been further utilized to
identify specific proteins and pathways that are
altered in the biofluids of PD compared with controls.
Metabolomics-based studies of blood from PD and
control patients have further uncovered the role of
oxidative stress in the pathogenesis of PD [161]. Itis
hoped that further integration of these techniques will
yield a more comprehensive understanding of PD
etiology and the biological pathways that mediate
neurodegeneration which may eventually assist in
developing more reliable biomarkers.

Conclusion

In spite of the efforts of biomedical researchers for
two centuries little progress has been made in
developing successful therapeutic strategies to PD.
The critical limitation is that neuron is a post
mitotic cell and by the time disease is diagnosed 60
to 70% of the neurons are degenerated. Therefore
in order to develop therapeutic strategies it is
important to develop methods to detect early
dopaminergic neurodegeneration. Here lies the
potential opportunity for biomedical researchers
to take advantage of animal models and identify or
characterize the strategies for early detection of PD
pathology and apply this knowledge to understand
the disease progression in human which is the
ultimate goal of biomedical research. This will enable
to work further either to delay the onset of

neurodegeneration, if not to prevent death of
DAninPD.
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